Neva Aerospace turbines go into production in France

VTOL-optimised electric turbo-fans (ETF) provide innovative and efficient solution for serious commercial drone designers

FOR IMMEDIATE RELEASE 08 MARCH 2018: Neva Aerospace has established a dedicated subsidiary company and consortium member to focus on ongoing R&D, testing and OEM production of its revolutionary turbo-fans for electric aircraft and commercial UAVs.

With a permanent base at Angers Loire airport, European Sustainable Propulsion SAS (ESP) will work closely with drone manufacturers and customers to develop solutions and specifications that meet their end users’ requirements.

Parent company Neva Aerospace Ltd, will maintain its focus on opportunities for developing turnkey commercial and industrial UAVs in partnership with key clients. It will also lead the group on continuing technical innovation in the complex world of UAVs where battery power, recharging, safety and airspace regulation are but a few of the fast-evolving, interconnected activity streams. With its patented technologies and large patent portfolio for electric distributed propulsion, the Neva Aerospace consortium remains in the spotlight as the one to watch!
ESPV has a permanent base for ongoing development, testing and production of its revolutionary electric turbofans at Angers Loire Airport. It opens its doors in March 2018 with five employees a number which is expected to triple within years as the initial order book grows.

Robert Vergnes, President of the Neva Consortium said:

“We identified Angers as an ideal base for our operations some time ago and have had tremendous support from both the airport itself and the local development agency **ALDEV**. Angers recognises the potential of our technology and sees the opportunity to establish a European lead in UAV and airborne electric vehicle propulsion. With neighbours like Babcock, we are among good company at the airport.”

The turbofans that will be produced by ESP are uniquely optimised for vertical and short takeoff and landing (VTOL & STOL). They are intrinsically safe and sustainable as there are no uncaged rotors. Remarkably light and powerful and meet engineers’ needs for power, control and safety as they design commercial drones and electric aircraft for practical applications where payload and range are critical. These will range from logistics and long-distance surveying to providing stable platforms for aerial robots.

"Our technologies are still unknown to the general public and many professionals in the sector. Nevertheless, a strategic battle is currently going on between the great powers, the battle for the efficiency of transport in general and in particular that of air transport. The mastery of the technology of electric turbines that will eventually replace the thermal turbines used to propel helicopters, light aircraft and regional aircraft, is a key issue and strategic for the economic development of France and the European Union."

"At a time when many are turning to the" flying cars "of Uber-Elevate and other Airbus-Vahana, we believe that the effort is primarily industrial and that it is important to produce electric turbines. quality for manufacturers of heavy goods vehicles and aircraft for the freight, construction and security sectors. The technology of the heavy electric multi-copter demonstrated by the German year (electric helicopter Volocopter) last and recently by the Chinese ("Ehang184 manned flight"), is a nascent technology. Although some other "stuntmen" have demonstrated the feasibility of using these distributed propulsion technologies for heavy aircrafts, there is still much to be done."

"The advantage of distributed electric turbine and propulsion technologies for aeronautics is their complete safety during a flight compared to propellers and their redundancies; but also and especially the reduction of two to three times the costs of purchase and operation for operators of aircraft - aircraft or helicopters. This will undoubtedly change the aeronautical landscape in the medium term. And this for the benefit of the environment with less noise and less pollution than current engines, because our technology will make hybrid or all-electric aircrafts as soon as batteries allow."

The range of electric turbines produced in Angers will be used by members of the Neva Aerospace consortium for the development of heavy air vehicles and will also be offered for sale to other UAV and aerial platform producers.
The target markets are cargo lifting, humanitarian intervention, air ambulance, cargo transportation, and police and military systems, for take-off weights (MSMD / MTOW) ranging from 5Kg to 2000Kg.

See more about the technology ESP is offering HERE.

Watch the successful test flight HERE.

Download image HERE

ABOUT EUROPEAN SUSTAINABLE PROPULSION (ESP):
ESP designs and manufactures intrinsically safe and powerful electric turbofans (ETF) optimised for VTOL/STOL, UAV, MAV, drones and other electric aviation operations.
ESP is member of the Neva Aerospace consortium
www.eu-sp.fr

ABOUT NEVA AEROSPACE:
NEVA AEROSPACE is a European consortium based in the United Kingdom. We partner with key clients, technology suppliers, and financial institutions to develop technologies for unmanned air vehicles (UAVs), unmanned air cargo(UAC), aerial robotic platforms (ARP), and electric aviation. Neva has a portfolio of patents and technologies which are among the most advanced worldwide. As of January 2016, the Neva Consortium included 5 companies; and more than 100 people are actively working on our projects.

Neva Aerospace offers turnkey solutions based on autonomous, low-emission aerial robots capable of carrying 2kg to 2 tonne payloads. Under development since 2009, our electrical aviation systems are designed to perform precise tasks and services. Capable of both vertical take-off and landing (VTOL) as well as horizontal flight, they have the accuracy needed to operate in congested urban environments. Their remarkable stability in flight will ensure that they are also reliable over long distances and as platforms for delicate service and maintenance work.

Neva is developing through partnership with key clients (oil & gas, construction, agribusiness, transportation, industry automation) and technology suppliers (avionics and air system controls, turbines, composites, robotics, etc), together with financial investors. This consortium development approach adds strength and ensures balance in the Neva business model. It provides access to our markets and to the key technologies needed to introduce heavy drones into civilian regulated airspace and industrial businesses. It also provides synergies between investors, early adopters in our target markets and providers of key technologies.
www.neva-aero.com